3.6.5 \(\int (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \, dx\) [505]

3.6.5.1 Optimal result
3.6.5.2 Mathematica [C] (verified)
3.6.5.3 Rubi [A] (verified)
3.6.5.4 Maple [B] (verified)
3.6.5.5 Fricas [F(-1)]
3.6.5.6 Sympy [F(-1)]
3.6.5.7 Maxima [F]
3.6.5.8 Giac [F]
3.6.5.9 Mupad [F(-1)]

3.6.5.1 Optimal result

Integrand size = 23, antiderivative size = 222 \[ \int (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \, dx=-\frac {\left (a^2-2 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {a \left (a^2+4 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {5 a^2 b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {a^2 \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d} \]

output
-(a^2-2*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin 
(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/d/((a+b*co 
s(d*x+c))/(a+b))^(1/2)+a*(a^2+4*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2* 
d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos 
(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1/2)+5*a^2*b*(cos(1/2*d*x+1/2*c) 
^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(b/(a 
+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1/2)+a^2*(a 
+b*cos(d*x+c))^(1/2)*tan(d*x+c)/d
 
3.6.5.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.46 (sec) , antiderivative size = 390, normalized size of antiderivative = 1.76 \[ \int (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \, dx=\frac {\frac {24 a b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 b \left (9 a^2+2 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 i \left (a^2-2 b^2\right ) \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {-\frac {b (1+\cos (c+d x))}{a-b}} \csc (c+d x) \left (2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )-b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right )}{a b \sqrt {-\frac {1}{a+b}}}+4 a^2 \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 d} \]

input
Integrate[(a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^2,x]
 
output
((24*a*b^2*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b) 
/(a + b)])/Sqrt[a + b*Cos[c + d*x]] + (2*b*(9*a^2 + 2*b^2)*Sqrt[(a + b*Cos 
[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b* 
Cos[c + d*x]] + ((2*I)*(a^2 - 2*b^2)*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b 
))]*Sqrt[-((b*(1 + Cos[c + d*x]))/(a - b))]*Csc[c + d*x]*(2*a*(a - b)*Elli 
pticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a 
- b)] + b*(2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + 
d*x]]], (a + b)/(a - b)] - b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b) 
^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a*b*Sqrt[-(a + b)^( 
-1)]) + 4*a^2*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/(4*d)
 
3.6.5.3 Rubi [A] (verified)

Time = 1.86 (sec) , antiderivative size = 236, normalized size of antiderivative = 1.06, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.783, Rules used = {3042, 3271, 27, 3042, 3538, 25, 3042, 3134, 3042, 3132, 3481, 3042, 3142, 3042, 3140, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) (a+b \cos (c+d x))^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx\)

\(\Big \downarrow \) 3271

\(\displaystyle \int \frac {\left (5 b a^2+6 b^2 \cos (c+d x) a-b \left (a^2-2 b^2\right ) \cos ^2(c+d x)\right ) \sec (c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \int \frac {\left (5 b a^2+6 b^2 \cos (c+d x) a-b \left (a^2-2 b^2\right ) \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {5 b a^2+6 b^2 \sin \left (c+d x+\frac {\pi }{2}\right ) a-b \left (a^2-2 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {1}{2} \left (-\left (\left (a^2-2 b^2\right ) \int \sqrt {a+b \cos (c+d x)}dx\right )-\frac {\int -\frac {\left (5 a^2 b^2+a \left (a^2+4 b^2\right ) \cos (c+d x) b\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}\right )+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {\left (5 a^2 b^2+a \left (a^2+4 b^2\right ) \cos (c+d x) b\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\left (a^2-2 b^2\right ) \int \sqrt {a+b \cos (c+d x)}dx\right )+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {5 a^2 b^2+a \left (a^2+4 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) b}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\left (a^2-2 b^2\right ) \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {5 a^2 b^2+a \left (a^2+4 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) b}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {\left (a^2-2 b^2\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {5 a^2 b^2+a \left (a^2+4 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) b}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {\left (a^2-2 b^2\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {5 a^2 b^2+a \left (a^2+4 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) b}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 \left (a^2-2 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {1}{2} \left (\frac {a b \left (a^2+4 b^2\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx+5 a^2 b^2 \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {2 \left (a^2-2 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {5 a^2 b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a b \left (a^2+4 b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 \left (a^2-2 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {1}{2} \left (\frac {5 a^2 b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a b \left (a^2+4 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \left (a^2-2 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {5 a^2 b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a b \left (a^2+4 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \left (a^2-2 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {1}{2} \left (\frac {5 a^2 b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a b \left (a^2+4 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \left (a^2-2 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3286

\(\displaystyle \frac {1}{2} \left (\frac {\frac {5 a^2 b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 a b \left (a^2+4 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \left (a^2-2 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\frac {5 a^2 b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 a b \left (a^2+4 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \left (a^2-2 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {1}{2} \left (\frac {\frac {2 a b \left (a^2+4 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {10 a^2 b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \left (a^2-2 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a^2 \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

input
Int[(a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^2,x]
 
output
((-2*(a^2 - 2*b^2)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/( 
a + b)])/(d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + ((2*a*b*(a^2 + 4*b^2)*Sq 
rt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d 
*Sqrt[a + b*Cos[c + d*x]]) + (10*a^2*b^2*Sqrt[(a + b*Cos[c + d*x])/(a + b) 
]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]])) 
/b)/2 + (a^2*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/d
 

3.6.5.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3271
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*Co 
s[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f* 
(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin 
[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^ 
2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 + c*d*(a^2 
+ b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - 
 d^2) - m*(b*c - a*d)^2 + d*n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x] 
, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - 
b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || 
IntegersQ[2*m, 2*n])
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
3.6.5.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(959\) vs. \(2(295)=590\).

Time = 10.75 (sec) , antiderivative size = 960, normalized size of antiderivative = 4.32

method result size
default \(\text {Expression too large to display}\) \(960\)

input
int((a+cos(d*x+c)*b)^(5/2)*sec(d*x+c)^2,x,method=_RETURNVERBOSE)
 
output
-((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*cos(1/2*d* 
x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a^2*b+(-2*a^3-2*a^2*b)*sin(1/2*d*x+1/2*c)^2* 
cos(1/2*d*x+1/2*c)-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+ 
1/2*c)^2+(a+b)/(a-b))^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/ 
2))*a^3+4*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^2-EllipticE 
(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3+EllipticE(cos(1/2*d*x+1/2*c),( 
-2*b/(a-b))^(1/2))*a^2*b+2*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2) 
)*a*b^2-2*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^3-5*EllipticP 
i(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^2*b)*sin(1/2*d*x+1/2*c)^2+(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1 
/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3+4*a*b^2*(sin(1/2* 
d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*El 
lipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-(sin(1/2*d*x+1/2*c)^2)^(1/2 
)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d* 
x+1/2*c),(-2*b/(a-b))^(1/2))*a^3+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)* 
sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b 
/(a-b))^(1/2))*a^2*b+2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d* 
x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1 
/2))*a*b^2-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2 
+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^...
 
3.6.5.5 Fricas [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^2,x, algorithm="fricas")
 
output
Timed out
 
3.6.5.6 Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+b*cos(d*x+c))**(5/2)*sec(d*x+c)**2,x)
 
output
Timed out
 
3.6.5.7 Maxima [F]

\[ \int (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^2,x, algorithm="maxima")
 
output
integrate((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^2, x)
 
3.6.5.8 Giac [F]

\[ \int (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^2,x, algorithm="giac")
 
output
integrate((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^2, x)
 
3.6.5.9 Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \, dx=\int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^2} \,d x \]

input
int((a + b*cos(c + d*x))^(5/2)/cos(c + d*x)^2,x)
 
output
int((a + b*cos(c + d*x))^(5/2)/cos(c + d*x)^2, x)